Humoral induction of pyloric rhythmic output in lobster stomatogastric ganglion: in vivo and in vitro studies.

نویسندگان

  • E Rezer
  • M Moulins
چکیده

In the lobster Jasus lalandii, 14 neurones of the stomatogastric ganglion (STG) are organized in a network that produces rhythmic pyloric outputs. In vitro experiments have shown that the STG neurones receive, via the stomatogastric nerve (stn), neuromodulatory inputs that influence the expression of the bursting properties of the neurones and the ability of the network to produce its rhythmic output. In contrast to these in vitro observations, in vivo transection of the stn does not abolish the pyloric rhythm. Rhythmic output can be recorded by electromyography immediately after stn transection and for up to 2 years afterwards. We have shown that, under these experimental conditions, the STG appears to be isolated from any neuronal input that might account for the maintenance of the rhythmic output. Experiments carried out in the 2 days after stn transection showed that an in vitro preparation of the isolated STG was unable to produce any rhythmic output, but blood serum added to the system could restore the pyloric output. These results suggest strongly that the pyloric network receives neural and humoral modulatory influences in parallel and that each type of influence alone is able to maintain the bursting capability of the pyloric neurones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central pattern generating neurons simultaneously express fast and slow rhythmic activities in the stomatogastric ganglion Running head: Simultaneous fast and slow rhythms in STG neurons

Neuronal firing patterns can contain different temporal information. It has long been known that the fast pyloric and the slower gastric motor patterns in the stomatogastric ganglion of decapod crustaceans interact. However, the bi-directional influences between the pyloric rhythm and the gastric mill rhythm have not been quantified in detail from preparations that spontaneously express both pa...

متن کامل

Central pattern generating neurons simultaneously express fast and slow rhythmic activities in the stomatogastric ganglion.

Neuronal firing patterns can contain different temporal information. It has long been known that the fast pyloric and the slower gastric motor patterns in the stomatogastric ganglion of decapod crustaceans interact. However, the bidirectional influences between the pyloric rhythm and the gastric mill rhythm have not been quantified in detail from preparations that spontaneously express both pat...

متن کامل

Spectral analyses reveal the presence of adult-like activity in the embryonic stomatogastric motor patterns of the lobster, Homarus americanus.

The stomatogastric nervous system (STNS) of the embryonic lobster is rhythmically active prior to hatching, before the network is needed for feeding. In the adult lobster, two rhythms are typically observed: the slow gastric mill rhythm and the more rapid pyloric rhythm. In the embryo, rhythmic activity in both embryonic gastric mill and pyloric neurons occurs at a similar frequency, which is s...

متن کامل

Neuromodulatory inputs maintain expression of a lobster motor pattern-generating network in a modulation-dependent state: evidence from long-term decentralization in vitro.

Neuromodulatory inputs play a critical role in governing the expression of rhythmic motor output by the pyloric network in the crustacean stomatogastric ganglion (STG). When these inputs are removed by cutting the primarily afferent stomatogastric nerve (stn) to the STG, pyloric neurons rapidly lose their ability to burst spontaneously, and the network falls silent. By using extracellular motor...

متن کامل

Modulation of a neural network by physiological levels of oxygen in lobster stomatogastric ganglion.

Although a large body of literature has been devoted to the role of O2 in the CNS, how neural networks function during long-term exposures to low but physiological O2 partial pressure (PO2) has never been studied. We addressed this issue in crustaceans, where arterial blood PO2 is set in the 1-3 kPa range, a level that is similar to the most frequently measured tissue PO2 in the vertebrate CNS....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 163  شماره 

صفحات  -

تاریخ انتشار 1992